Recent success stories suggest that in silico protein− ligand binding free-energy calculations are approaching chemical accuracy. However, their widespread application remains limited by the extensive human intervention required, posing challenges for the neophyte. As such, it is critical to develop automated workflows for estimating protein−ligand binding affinities with minimum personal involvement. Key human efforts include setting up and tuning enhanced-sampling or alchemical-transformation algorithms as a preamble to computational binding free-energy estimations. Additionally, preparing input files, bookkeeping, and postprocessing represent nontrivial tasks. In this Perspective, we discuss recent progress in automating standard binding free-energy calculations, featuring the development of adaptive or parameter-free algorithms, standardization of binding free-energy calculation workflows, and the implementation of user-friendly software. We also assess the current state of automated standard binding free-energy calculations and evaluate the limitations of existing methods. Last, we outline the requirements for future algorithms and workflows to facilitate automated free-energy calculations for diverse protein−ligand complexes.