Producing an eco-friendly fuel with the least amount of sulfur compounds has been an ongoing issue for petroleum refineries. In this study, bentonite (which is a cheap material and is locally available in abundance) is employed to prepare a nano-silica catalyst with a high surface area to be used for the oxidative desulfurization of kerosene. Two composite catalysts of Fe/silica were supported on CAT-1 (0% HY-zeolite and 100% nano-silica) and CAT-2 (20% HY-zeolite and 80% nano-silica). The activity of the catalysts was evaluated in a batch ODS (oxidative desulfurization) process at temperatures of 30, 60, 90, and 120 °C, a pressure of 1 atm, and a reaction time of 30, 60, 90, and 120 min using 120 L/h of air as the oxidant. The results revealed that the highest total sulfur removal efficiency was 50% and 87.88% for 100% nano-silica (CAT-1) and 80% nano-silica (CAT-2), respectively. The experimental data were then used to construct and validate an accurate mathematical model of the process. The operational parameters for eliminating more than 99% of sulfur and producing eco-friendly fuel were then achieved by using the model. The testing methods for these characterizing materials included X-ray diffraction (XRD), thermal gravimetric examination (TGA), X-ray fluorescence (XRF), and surface area (BET). The outcomes indicated that the addition of HY-zeolite increased the activity of the catalyst (CAT-2 > CAT-1).