The addition of ferrous sulfate as a depressant for Ca-bearing minerals such as calcite and fluorite during scheelite flotation was investigated to recover scheelite from tungsten mine tailings, using Hallimond-tube flotation tests, zeta-potential measurement and Fourier-transform infrared (FT-IR) analyses. The flotation tests indicate that the selectivity of scheelite recovery was the largest over calcite and fluorite under the following conditions: 0.5 g sample, 50 g/ton AF65, 1 × 10−3 M sodium oleate, 1200 g/ton SF2 (sodium silicate and ferrous sulfate) depressant with the 8:2 ratio of sodium silicate and ferrous sulfate, 50 mL/min air injection rate, 5 min flotation time, and pH 8. The selectivity of scheelite flotation increased when the amount of SF2 depressant addition increased to 1200 g/ton, but it decreased by adding 1400 g/ton SF2, which would result from the precipitation of iron components. In the zeta potential results, the zeta potentials of scheelite with the collector show similar results regardless of the addition of SF2, while the change of zeta potentials of calcite and fluorite by adding NaO collector diminished when SF2 was added. In FT-IR analyses, the spectrum of NaO in scheelite results was observed regardless of the addition of SF2, while the spectra of NaO in calcite and fluorite results disappeared when SF2 was added. These results suggest that the addition of SF2 prevents the adsorption of NaO on the surface of calcite and fluorite. Therefore, the addition of SF2 could enhance the selectivity of scheelite flotation over calcite and fluorite.