Using solid waste to sequester carbon dioxide not only reduces the greenhouse effect but also reuses resources. However, the existing solidified carbon dioxide storage materials are expensive and have poor storage effect. Therefore, in this study, cement, solid waste base material, and 30% hydrogen peroxide were used to make foamed concrete materials through chemical foaming, and XRD, BET, SEM, and thermogravimetric techniques were used to explore the amount of carbon dioxide adsorbed by foamed concrete materials under different ratio conditions. The results show that (1) the hydration products of the cementified materials mainly include C-S-H, Ht and Ca(OH)2, which are important factors for the storage of CO2. (2) A water–cement ratio of 0.7 and a foaming agent dosage of 10% are the best ratios for foamed concrete materials. With the increase of the water–cement ratio and the dosage of the foaming agent, the amount of CO2-sealed stock first increases and then decreases. (3) The maximum carbon dioxide sealing capacity of foamed concrete material is 66.35 kg/m3.