The key characteristics of an air filter-flow resistance and filtration efficiency-are strongly affected by captured particles. The impact of exposing loaded heating, ventilating, and air conditioning air filters to a relative humidity (RH) other than that experienced during loading is investigated to develop an understanding of the role of RH throughout filter operation. Flat sheets of commercial filter media were loaded with hygroscopic, non-hygroscopic, or a mixture of particles in a laboratory apparatus. When filters loaded with hygroscopic particles in dry air were exposed to an elevated RH of 40%, the flow resistance reduced by up to 47%, depending on the filter being tested. Investigation of filter efficiency before and after changes in RH in the same samples shows reductions of up to 11 percentage points in the 130-nm size range. Further increasing RH causes additional drops in flow resistance and efficiency whereas reverting back to a lower humidity does not change the filter characteristics. The irreversibility of the particle-loaded filter characteristics implies that the RH increases are associated with an irreversible change in the particle structure. The response to humidity was reduced if an aerosol mixture of hygroscopic and non-hygroscopic particles is used. Exposure of filters loaded with only non-hygroscopic particles does not show the same dependence on RH. Small increases in growth factor for RH changes below deliquescence, causing morphological changes in captured particle aggregates, is a potential explanation for the changes observed.