The present Review describes the progress made in using imaging optical fiber bundles for fluorescence and electrochemical-initiated chemiluminescence imaging. A novel optoelectrochemical microring array has been fabricated and demonstrated for concurrent electrochemical and optical measurements. The device comprises optical fibers coated with gold via electroless gold deposition and assembled in a random array format. The design yielded an array of approximately 200 micro-ring electrodes, where interdiffusional problems were minimized. The inner diameter of the ring electrode is fixed by the diameter of the individual optical fibers (25 mm), while the outer radius is determined by the thickness of the deposited gold. While all the fibers are optically addressable, they are not all electrochemically addressable. The resolution of this device is in the tens of micrometers range, determined by the diameter of the optical fiber (25 mm) and by the spacing between each electrically connected fiber. For the purpose of having wellbehaved microelectrode characteristics, this spacing was designed to be larger than 60 mm. The array was characterized using ferrocyanide in aqueous solution as a model electroactive species to demonstrate that this microelectrode array format exhibits steady-state currents at short response times. This device has potential application to be used as an optoelectronic sensor, especially for the electrolytic generation and transmission of electrochemiluminescence, and was used to demonstrate that electrochemically generated luminescent products can be detected with the fiber assembly.