In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (∼5 M E ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surface temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of the atmosphere. We propose a mechanism for methane release into the atmosphere, where freshly exposed reservoirs of methane clathrate hydrate at the ridge dissociate under surface conditions. We formulate the relation between the outgassing flux and the tectonic mode dynamical characteristics. We give numerical estimates for the global outgassing rate of methane into the atmosphere. We find, for example, that for a 2 M E planet outgassing can release 10 27 -10 29 molecules s −1 of methane to the atmosphere. We suggest a qualitative explanation for how the same outgassing mechanism may result in either a stable or a runaway volatile release, depending on the specifics of a given planet. Finally, we integrate the global outgassing rate for a few cases and quantify how the surface atmospheric pressure of methane evolves over time. We find that methane is likely an important constituent of water planets' atmospheres.