This review looks at the main processes available for the production of light olefins with a focus on maximizing the production of propylene. Maximization of propylene production has become the focus of most refineries because it is in high demand and there is a supply shortage from modern steam crackers, which now produce relatively less propylene. The flexibility of the fluid catalytic cracking (FCC) to various reaction conditions makes it possible as one of the means to close the gap between supply and demand. The appropriate modification of the FCC process is accomplished by the synergistic integration of the catalyst, temperature, reaction-residence time, coke make, and hydrocarbon partial pressure. The main constraints for maximum propylene yield are based on having a suitable catalyst, suitable reactor configuration and reaction conditions.