Coarsening and kinetic arrest of colloidal systems undergoing spinodal decomposition (SD) is a conserved motif for forming hierarchical, bicontinuous structures. Although the thermodynamic origins of SD in colloids are widely known, the microstructural processes responsible for its coarsening and associated dynamics en route to arrest remain elusive. To better elucidate the underlying large-scale microdynamical processes, we study a colloidal system with moderate-range attractions which displays characteristic features of arrested SD, and study its dynamics during coarsening through a combination of differential dynamic microscopy and real-space tracking. Using these recently developed imaging techniques, we reveal directly that the coarsening arises from collective dynamics of dense domains, which undergo slow, intermittent, and ballistic motion. These collective motions indicate interfacial effects to be the driving force of coarsening. The nature of the gelation enables control of the arrested length scale of coarsening by the depths of quenching into the spinodal regime, which we demonstrate to provide an effective means to control the elasticity of colloidal gels.