This study is aimed at developing a technological approach for managing the automated control of the production process of photopolymer-based products. Thermometric analysis was proposed and used to identify the onset and completion of the polymerisation process of the studied products using a homebuilt automated laboratory setup based on the industrial additive polymerisation unit AZ3000. The principle of extremal control was used to develop the operation algorithm. Samples measuring 25x25x3 mm were manufactured from the extensively used photopolymer composite ROEHM R-50. The controlled parameters of the photopolymerization process, including the temperature in the active zone and on the product surface, were scientifically justified. The developed algorithm, implemented as a software package written for the AtMega 328 processor in C++ within the AVR Studio environment, offers precise control over the onset and completion of the polymerisation process within the product. The structural characteristics of the test photopolymer materials were studied. It was found that the hardness of the photopolymer samples increased from 109.12 to 117.5 HL. This demonstrated the functionality of the developed algorithm for the control system of the photopolymerisation process. The testing of the developed technological approach and algorithm for automated control of additive manufacturing using photopolymer materials indicates that it is possible to obtain components with predetermined strength characteristics. The use of such components adds a new dimension to the selection of photopolymer materials for the manufacture of products in various fields of mechanical engineering, including transport and aviation.