2022
DOI: 10.1101/2022.11.26.517738
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Kinetochore-fiber lengths are maintained locally but coordinated globally by poles in the mammalian spindle

Abstract: At each cell division, nanometer-scale components self-organize to build a micron-scale spindle. In mammalian spindles, microtubule bundles called kinetochore-fibers attach to chromosomes and focus into spindle poles. Despite evidence suggesting that poles can set spindle length, their role remains poorly understood. In fact, many species do not have spindle poles. Here, we probe the pole's contribution to mammalian spindle length, dynamics, and function by inhibiting dynein to generate spindles whose kinetoch… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 74 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?