This paper presents a novel Cable-Driven Parallel Robot dedicated to laser-scanning operations. The proposed device can inspect low-accessibility environments thanks to a self-deployable end-effector, which can be inserted in a closed container through very small access areas, such as hatches, pipes, etc. The reconfigurable end-effector is suspended and actuated by extendable cables, and is equipped with an optical mirror, which is used to deflect a laser beam produced by a frame-fixed laser distance sensor. Thanks to its large orientation capabilities, the machine can record the position of points belonging to a large portion of the surface to be scanned, primarily by tilting and panning the end-effector. The robot is equipped with a frame-orientation calibration device, which can align the machine frame to earth gravity before operation. The robot capabilities are validated by a prototype, which experimentally reconstruct benchmark surfaces.