Abstract:We prove that in a metric measure space X, if for some p ∈ (1, ∞) there are uniform bounds (independent of the measure) for the weak type (p, p) of the centered maximal operator, then X satisfies a certain geometric condition, the Besicovitch intersection property, which in turn implies the uniform weak type (1, 1) of the centered operator.In R d with any norm, the constants coming from the Besicovitch intersection property are bounded above by the translative kissing numbers. This leads to improved estimates … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.