Most S-wave particle motions of local micro-earthquakes in the WestBohemia/Vogtland region display S-wave splitting. The split S waves are usually well defined, being separated in time and polarized in roughly perpendicular directions in the horizontal projection. In most cases, the polarization of the fast S wave is aligned NW-SE (referred to as "normal splitting"), which is close to the direction of the maximum horizontal compression in the region. However, for some ray directions, the polarization of the fast S wave is aligned NE-SW (referred to as "reverse splitting"). The pattern of normal/reverse splitting on a focal sphere is station-dependent, indicating the presence of inhomogeneities in anisotropy. For some stations, the normal/reverse splitting pattern is asymmetric with respect to the vertical axis, indicating the symmetry axes of anisotropy are probably inclined. The presence of inclined anisotropy is confirmed by observations of directionally dependent delay times between split S waves. A complex and stationdependent anisotropy pattern is probably the result of a complicated anisotropic crust characterized by diverse geological structures. The spatial variation of anisotropy probably reflects the presence of a variety of different types of anisotropic rocks in the region.K e y w o r d s : anisotropy, Earth's crust, earthquake swarm, micro-earthquakes, polarization, stress field, S waves, S-wave splitting, 90º-flips, West Bohemia/Vogtland