Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The complexation of Cu 2+ with glycine in aqueous solution of an anionic surfactant, sodium dodecyl sulfate, was studied spectrophotometrically. Sodium dodecyl sulfate in concentrations above the critical micellization concentration participates in the complexation. The composition of the complexes and the equilibrium constants of the complexation were determined.Complexation of biologically active metals with physiologically active organic ligands is an urgent line of coordination chemistry, because the coordinationbound metal exhibits considerably higher activity and lower toxicity.Ionic micelles, thanks to their diphilic properties and charged surface, resemble biological membranes and therefore are often chosen as systems simulating the reaction medium of biological substrates [1].We found previously [2] that comenic acid (5-hydroxy-4-pyrone-2-carboxylic acid used in pharmacology) forms ionic associates of various stoichiometries with a cationic surfactant, cetylpyridinium chloride. This work continues a series of studies on interaction of biologically active compounds with surfactants. We have studied the complexation of Cu(II) with glycine in the presence of an anionic surfactant, sodium dodecyl sulfate. Glycine (aminoacetic acid) is one of the most widely occurring amino acids, a component of proteins; it forms complexes with many metal cations. Copper is a metal of vital importance; its stock in a human body is continuously replenished, and the deficiency of copper causes the damage of vessels.The interactions in the system were monitored spectrophotometrically. We recorded the absorption spectra containing equimolar amounts of CuCl 2 and glycine and variable amounts of sodium dodecyl sulfate. To find in what form (monomeric or micellar) sodium dodecyl sulfate participates in the interaction, we determined stalagmometrically the critical micellization concentration of the ternary system CuCl 2 3 glycine3sodium dodecyl sulfate. The critical micellization concentration was 1.5 mM (Fig. 1), i.e., close to that of copper dodecyl sulfate, 1.2 mM [3]. Addition of sodium dodecyl sulfate to the system CuCl 2 3 glycine in concentrations below the critical micellization concentration did not lead to spectral changes, and at concentrations above the critical micellization concentrations the optical density increased and the absorption maximum shifted toward the short-wave region (Fig. 2), suggesting formation of complexes.The spectrophotometric data were processed with the FTMT program [4] based on a search for a minimum of the criterial function F by varying log K i in each iteration.The function being minimized has the form F = 5 5 (D k,e 3 D k,c ) . l 2 , K L l=1 k=1 where K is the number of wavelengths; L, number of 70 60 50 40 30 310 39 38 37 36 lnc Nads [M] Fig. 1. Isotherms of the surface tension of an aqueous solution of the system CuCl 2 !glycine (gl)!sodium dodecyl sulfate (Nads). c CuCl 2 0.02, c gl 0.04 M.
The complexation of Cu 2+ with glycine in aqueous solution of an anionic surfactant, sodium dodecyl sulfate, was studied spectrophotometrically. Sodium dodecyl sulfate in concentrations above the critical micellization concentration participates in the complexation. The composition of the complexes and the equilibrium constants of the complexation were determined.Complexation of biologically active metals with physiologically active organic ligands is an urgent line of coordination chemistry, because the coordinationbound metal exhibits considerably higher activity and lower toxicity.Ionic micelles, thanks to their diphilic properties and charged surface, resemble biological membranes and therefore are often chosen as systems simulating the reaction medium of biological substrates [1].We found previously [2] that comenic acid (5-hydroxy-4-pyrone-2-carboxylic acid used in pharmacology) forms ionic associates of various stoichiometries with a cationic surfactant, cetylpyridinium chloride. This work continues a series of studies on interaction of biologically active compounds with surfactants. We have studied the complexation of Cu(II) with glycine in the presence of an anionic surfactant, sodium dodecyl sulfate. Glycine (aminoacetic acid) is one of the most widely occurring amino acids, a component of proteins; it forms complexes with many metal cations. Copper is a metal of vital importance; its stock in a human body is continuously replenished, and the deficiency of copper causes the damage of vessels.The interactions in the system were monitored spectrophotometrically. We recorded the absorption spectra containing equimolar amounts of CuCl 2 and glycine and variable amounts of sodium dodecyl sulfate. To find in what form (monomeric or micellar) sodium dodecyl sulfate participates in the interaction, we determined stalagmometrically the critical micellization concentration of the ternary system CuCl 2 3 glycine3sodium dodecyl sulfate. The critical micellization concentration was 1.5 mM (Fig. 1), i.e., close to that of copper dodecyl sulfate, 1.2 mM [3]. Addition of sodium dodecyl sulfate to the system CuCl 2 3 glycine in concentrations below the critical micellization concentration did not lead to spectral changes, and at concentrations above the critical micellization concentrations the optical density increased and the absorption maximum shifted toward the short-wave region (Fig. 2), suggesting formation of complexes.The spectrophotometric data were processed with the FTMT program [4] based on a search for a minimum of the criterial function F by varying log K i in each iteration.The function being minimized has the form F = 5 5 (D k,e 3 D k,c ) . l 2 , K L l=1 k=1 where K is the number of wavelengths; L, number of 70 60 50 40 30 310 39 38 37 36 lnc Nads [M] Fig. 1. Isotherms of the surface tension of an aqueous solution of the system CuCl 2 !glycine (gl)!sodium dodecyl sulfate (Nads). c CuCl 2 0.02, c gl 0.04 M.
À minha família, João, Íria e Thaís, pelo apoio incondicional, dedicação e por sempre terem me proporcionado o melhor que puderam.Aos meus orientadores, Edvaldo e Ana Maria, que, sempre com muita paciência e carinho, me ajudaram a amadurecer e completar mais uma etapa da minha vida.Aos amigos da graduação Murilo, Denise e Fernanda, por todos os momentos vividos juntos, pelas risadas e companhia, desde 2008. À Família Reset, pelas risadas, loucuras e todos os eventos ao longo de tantos anos.Aos amigos do laboratório B-145, por todas as conversas, construtivas ou não, que me fizeram ampliar os horizontes, ou apenas passar o tempo.Ao Karl, que tanto me ajudou sempre que precisei, com muita calma e paciência. E por todas as curiosidades.Ao Gabriel, meu IC querido, que sempre foi muito prestativo, atencioso e me ajudou com tantos detalhes desse projeto. E também pelas obleas! Aos "BFFs" Eduardo, Antonio e Fernanda, pelas horas de café, descontração, brincadeiras e por fazer meus dias mais leves.Ao Thiago, por me acolher no laboratório e ter se tornado um amigo tão querido. Nossas conversas, mesmo que à distância, sempre foram muito importantes para mim.Agradeço novamente ao Eduardo, por ser meu parceirinho, pelo carinho, apoio, compreensão, puxões de orelha, por sempre me motivar e por estar presente em tantos momentos da minha vida.Agradeço à CAPES pelo auxílio financeiro, ao LNNano e ao LNLS pela estrutura e em especial ao Alexandre e Marcelo, pela ajuda com as análises de microscopia.Obrigada a todos. RESUMOMicelas gigantes (MG) são estruturas que se assemelham à sistemas poliméricos, essas são formadas pela auto associação de moléculas surfactantes em determinadas condições. Neste projeto, as micelas gigantes foram produzidas pela combinação do surfactante catiônico brometo de hexadeciltrimetilamônio (CTAB) com salicilato de sódio (NaSal). A indução da formação das micelas alongadas ocorre pela inserção do salicilato entre as cabeças polares do surfactante. Também é bastante conhecido na literatura que íons salicilato podem complexar com íons Fe 3+ , formando, em meio ácido, um complexo de coloração violeta. Na presença de CTAB e Fe 3+ , estabelece-se uma competição pelos íons salicilato. Porém, ao se ajustar o pH para 7, ocorre a formação de nanopartículas de oxihidróxido de ferro(III). Estas nanopartículas permanecem estabilizadas na solução de micelas gigantes. O presente trabalho tem como objetivo o entendimento da referida estabilidade coloidal e da estrutura formada pelo sistema. Nos estudos foram utilizadas principalmente as seguintes técnicas: espalhamento dinâmico de luz (DLS), espalhamento de raios X em baixos ângulos (SAXS), microscopia eletrônica de transmissão (TEM), microscopia eletrônica de transmissão em temperaturas criogênicas (Cryo-TEM) e reologia. Os resultados mostraram que as nanopartículas formadas (de 3 a 5 nm de diâmetro), por terem potencial zeta negativo, ligam-se eletrostaticamente à superfície das micelas gigantes, que apresentam carga superficial positiva. Forma-se assim, uma estrutur...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.