2022
DOI: 10.30865/json.v3i4.4167
|View full text |Cite
|
Sign up to set email alerts
|

Klasifikasi Citra Daging Babi dan Daging Sapi Menggunakan Deep Learning Arsitektur ResNet-50 dengan Augmentasi Citra

Abstract: Beef is an example of an animal protein-rich food. The consumption of meat in Indonesia is increasing year after year, in tandem with the country's growing population. Many traders purposefully combine beef and pork in order to maximize profits. With the naked eye, it's difficult to tell the difference between pork and beef. In Muslim-majority countries, the assurance of halal meat is crucial. This study uses Deep Learning with the Convolutional Neural Network (CNN) method and ResNet-50 with data augmentation … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…Setelah data terkumpul, citra-citra disesuaikan ukurannya dari yang sebelumnya berukuran 1280×720 menjadi 224×224 [17]. Setelah itu, dilakukan augmentasi data untuk memperbanyak citra yang digunakan dalam tahap pelatihan sehinggadapat mengoptimalkan kinerja metode CNN.…”
Section: Preprocessingunclassified
“…Setelah data terkumpul, citra-citra disesuaikan ukurannya dari yang sebelumnya berukuran 1280×720 menjadi 224×224 [17]. Setelah itu, dilakukan augmentasi data untuk memperbanyak citra yang digunakan dalam tahap pelatihan sehinggadapat mengoptimalkan kinerja metode CNN.…”
Section: Preprocessingunclassified
“…One other solution that can be used to distinguish beef and pork in addition to the above methods is to utilize deep learning methods. Some related research that has been done before is the identification of beef and pork with the Resnet-50 architecture which produces a model with an average accuracy of 87.64% [13]. Further research was conducted using EfficientNet-B0 and obtained an accuracy of 95.16% [14].…”
Section: Introductionmentioning
confidence: 99%