2019
DOI: 10.30591/jpit.v4i1.1125
|View full text |Cite
|
Sign up to set email alerts
|

Klasifikasi Helpdesk Menggunakan Metode Support Vector Machine

Abstract: The online helpdesk with ticketing system with the help of operators often experiences problems such as inappropriate delegation processes, the duration of the helpdesk waiting time to be delegated, even the helpdesk is missed to be handled. The ticket delegation checked manually by the operator has risks creating an error in delegating helpdesk tickets to inappropriate technicians. The helpdesk classification system is needed so that every incoming helpdesk ticket can be classified to the right technician acc… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
6
0
9

Year Published

2020
2020
2023
2023

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(15 citation statements)
references
References 3 publications
0
6
0
9
Order By: Relevance
“…After carrying out the data labeling process, the next step is term weighting process with TF-IDF. Because basically the machine can only process numbers, then each word in the document will be given a weight or frequency value, and then the result of this weighting process is a vector value, later the vector value will be entered into a vector space for later use for the testing process algorithm after this [14].…”
Section: Term Weightingmentioning
confidence: 99%
“…After carrying out the data labeling process, the next step is term weighting process with TF-IDF. Because basically the machine can only process numbers, then each word in the document will be given a weight or frequency value, and then the result of this weighting process is a vector value, later the vector value will be entered into a vector space for later use for the testing process algorithm after this [14].…”
Section: Term Weightingmentioning
confidence: 99%
“…Di google play store ada sebuah fitur yaitu rating dan ulasan (review), fitur itu bisa akan mempengaruhi calon pengguna dikarenakan kecenderungan pengguna sebelum mengunduhnya akan melihat kolom ulasan atau review ini sebagai tolak ukur bagus atau tidaknya suatu produk, serta opini opini yang di tuangkan di dalamnya. ulasan ini biasanya terbagi menjadi ulasan positif dan ulasan negatif tetapi ulasan dari sosial media mempengaruhi keputusan seseorang untuk membeli atau menggunakan produk tersebut [6] ditambah dengan kecenderungan pengguna ingin mengetahui pendapat serta pengalaman pengguna lain yang terkait aplikasi tersebut [7] oleh sebab itu diperlukan metode untuk menyortir serta menganalisis ulasan dengan cepat dan akurat serta mengkategorikan antara ulasan positif dengan negatif.…”
Section: Pendahuluanunclassified
“…Text mining adalah proses semi otomatis penggalian pola (pengetahuan dan informasi yang berguna) dari sejumlah sumber data berukuran besar yang tidak terstruktur berupa teks [11] [12]. Text mining menggunakan natural language processing untuk memasukkan struktur ke dalam kumpulan teks.…”
Section: Tinjauan Pustaka 21 Text Miningunclassified