2021
DOI: 10.25126/jtiik.2021854483
|View full text |Cite
|
Sign up to set email alerts
|

Klasifikasi Kelas Kata (Part-Of-Speech Tagging) untuk Bahasa Madura Menggunakan Algoritme Viterbi

Abstract: <p class="Abstrak">Bahasa manusia adalah bahasa yang digunakan oleh manusia dalam bentuk tulisan maupun suara. Banyak teknologi/aplikasi yang mengolah bahasa manusia, bidang tersebut bernama <em>Natural Language Processing </em>yang merupakan ilmu yang mempelajari untuk mengolah dan mengekstraksi bahasa manusia pada perkembangan teknologi. Salah satu proses pada <em>Natural Language Processing </em>adalah <em>Part-Of-Speech Tagging</em>. <em>Part-Of-Speech Taggin… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 3 publications
0
2
0
1
Order By: Relevance
“…Many previous studies have been conducted on TB classification using machine learning. For example [8], classified TB data into class 1 (positive) and class 2 (negative) using the Extreme Machine Learning (ELM) method.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Many previous studies have been conducted on TB classification using machine learning. For example [8], classified TB data into class 1 (positive) and class 2 (negative) using the Extreme Machine Learning (ELM) method.…”
Section: Literature Reviewmentioning
confidence: 99%
“…Pengisian data kosong dengan KNN menggunakan parameter K=2 telah meningkatkan nilai Silhouette Coefficient sebesar 3,4% jika dibandingkan dengan hasil clustering tanpa pengisian data kosong menggunakan KNN. Ini menunjukkan bahwa penerapan KNN secara efektif membantu mengatasi permasalahan data yang tidak lengkap pada dataset PMKS [2].…”
Section: Pendahuluanunclassified
“…The goal is to adjust the input data or input with the output data or output. The method used in data normalization is Min-Max Normalization [11]. The data normalization is formulated as follows:…”
Section: Data Pre-processing and Post-processingmentioning
confidence: 99%