2022
DOI: 10.29313/jrs.v1i2.525
|View full text |Cite
|
Sign up to set email alerts
|

Klasifikasi Penipuan Transaksi Kartu Kredit Menggunakan Metode Random Forest

Abstract: Abstract. In today's technological developments, the use of credit cards is a very easy and practical way for customers to make transactions. However, with the increasing use of credit cards, it will lead to financial fraud, namely fraudulent credit card transactions that can harm customers and the bank or company. One technique that can overcome this problem is data mining techniques, namely the classification used to predict fraudulent actions in credit card transactions. The method used is the random forest… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
3

Year Published

2023
2023
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(5 citation statements)
references
References 3 publications
0
2
0
3
Order By: Relevance
“…To measure the evaluation of model performance based on confusion matrix with accuracy and AUC value. The formula used is as follows (Lestari & Sirodj, 2022) (2)…”
Section: Discussionmentioning
confidence: 99%
“…To measure the evaluation of model performance based on confusion matrix with accuracy and AUC value. The formula used is as follows (Lestari & Sirodj, 2022) (2)…”
Section: Discussionmentioning
confidence: 99%
“…Akurasi terbaik adalah 1, sedangkan akurasi terburuk yaitu 0. Akurasi dapat dihitung dengan menggunakan persamaan (6) [19].…”
Section: ) Accuracyunclassified
“…dengan ๐‘ก๐‘ : true Positive ๐‘“๐‘› : false Negative4) F-MeasureF-measure didefinisikan sebagai rata-rata harmonik tertimbang dari Precision dan Recall. Biasanya digunakan untuk menggabungkan pengukuran Recall dan Precision dalam satu ukuran untuk membandingkan algoritma Machine Learning yang berbeda[19]. Rumus F-Measure didefinisikan seperti persamaan(5).…”
unclassified
“…Juga, setiap pohon tidak menggunakan semua data asli, melainkan menggunakan data model bootstrap dengan pengembalian. Keputusan kelas dibuat berdasarkan suara terbanyak dari semua pohon yang terbentuk [8].…”
Section: Pendahuluanunclassified