2014
DOI: 10.1016/s0034-4877(14)60029-x
|View full text |Cite
|
Sign up to set email alerts
|

Klein-Gordon particle in a one-dimensional box with a moving wall

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
8
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
2
2

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 9 publications
0
8
0
Order By: Relevance
“…The disappearance of Klein tunneling in the infinite well limit should also be of interest to recent works that have studied the Klein-Gordon equation in a box with moving walls [14][15][16] (the special boundary conditions chosen in these works were indeed not justified).…”
Section: Discussionmentioning
confidence: 99%
“…The disappearance of Klein tunneling in the infinite well limit should also be of interest to recent works that have studied the Klein-Gordon equation in a box with moving walls [14][15][16] (the special boundary conditions chosen in these works were indeed not justified).…”
Section: Discussionmentioning
confidence: 99%
“…Therefore this amounts to what is called the ultra non-relativistic limit and the above solution represent a negative energy solutions for which E ≈ −mc 2 . Note that it is best to use the functions J iν (z) sin(φ n ) and J −iν (z) sin(φ n ), also the basis used in [15], as they form the right basis for the emergence of non-relativistic solutions.…”
Section: Discussionmentioning
confidence: 99%
“…The analytical solutions of this problem (a KG particle in an infinite square-well potential with a linearly expanding wall) were obtained by Koehn (see eq. 11 in [13]); other authors proposed a generalization shortly after [14], and gave an alternative method in [15]. These solutions can be written as linear superpositions of with n = 1, 2, 3, .…”
Section: Kg Equation With a Moving Boundarymentioning
confidence: 99%
See 1 more Smart Citation
“…The goal of the present article is precisely to answer this question by investigating the same system in a relativistic setting based on the Klein-Gordon (KG) equation. We will rely on the solutions of the KG equation for a particle inside a uniformly expanding cavity that were recently obtained [13][14][15]. Note that several properties of singleparticle relativistic wave equations have been investigated recently [16][17][18][19].…”
mentioning
confidence: 99%