KLF1 Activates RAC3 to Mediate Fatty Acid Synthesis and Enhance Cisplatin Resistance in Bladder Cancer Cells
Lide Song,
Qi Xu,
Rong Chen
et al.
Abstract:While cisplatin remains a frontline treatment for bladder cancer (BCa), the onset of resistance greatly hampers its effectiveness. RAC3 is closely linked to chemoresistance in cancer cells, but its specific role in cisplatin resistance within BCa is still elusive. RAC3 expression in BCa was analyzed using bioinformatics and quantitative polymerase chain reaction (qPCR). The gene set enrichment analysis (GSEA) identified RAC3-enriched pathways and the correlation between RAC3 and fatty acid synthase (FASN), a g… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.