Systemic lupus erythematosus (SLE) is a multisystem, autoimmune disease that predominantly affects women. Previous findings that duplicated Toll-like receptor 7 (Tlr7) promotes lupus-like disease in male BXSB mice prompted us to evaluate TLR7 in human SLE. By using a candidate gene approach, we identified and replicated association of a TLR7 3′UTR SNP, rs3853839 (G/C), with SLE in 9,274 Eastern Asians (P combined = 6.5 × 10 −10 ), with a stronger effect in male than female subjects [odds ratio, male vs. female = 2.33 (95% CI = 1.64-3.30) vs. 1.24 (95% CI = 1.14-1.34); P = 4.1 × 10]. G-allele carriers had increased TLR7 transcripts and more pronounced IFN signature than C-allele carriers; heterozygotes had 2.7-fold higher transcripts of G-allele than C-allele. These data established a functional polymorphism in type I IFN pathway gene TLR7 predisposing to SLE, especially in Chinese and Japanese male subjects. functional polymorphism | disease susceptibility | autoimmunity | type I interferon S ystemic lupus erythematosus [SLE; Online Mendelian Inheritance in Man (OMIM) no. 152700] is a multisystem, autoimmune disease with strong genetic and environmental components (1). SLE predominantly affects women, with a female-to-male ratio of approximately 9:1. Male patients with SLE, although rare, tend to have more severe disease and poorer outcome (2), suggesting potential sex dimorphism in the disease development. Although the sex effect has often been attributed to sex hormones, the fact that XXY male subjects have approximately a 14-fold higher risk of developing SLE than 46 XY men indicates that X-linked genes may be risk factors for human SLE (3).Located at Xp22.2, Toll-like receptor 7 (TLR7; OMIM no. 300365) and its functionally related gene TLR8 (OMIM no. 300366) encode proteins that play critical roles in pathogen recognition and activation of innate immunity (4). They recognize endogenous RNA-containing autoantigens and induce the expression of type I IFN, a pivotal cytokine in the pathogenesis of SLE (5). In lupus-prone BXSB mice, the translocation of a segmental duplication of X chromosome to Y chromosome creates the Y-linked autoimmune accelerator (Yaa) locus, which was associated with autoreactive B cell responses to RNA-related antigens and exacerbation of glomerulonephritis in male mice (6). Although translocated X chromosome segment in Yaa may contain as many as 16 genes, the major gene for causation of the autoimmune phenotypes was identified to be TLR7 (7), making it a potential susceptibility gene for SLE. By using a candidate gene approach, we report herein that a functional polymorphism in 3′UTR of TLR7 is associated with SLE in Chinese and Japanese populations, with a stronger effect in male than female subjects.
ResultsDiscovery and Replication of the Association of a TLR7 3′UTR SNP with SLE in Eastern Asian Population. We genotyped 27 SNPs from the TLR7-TLR8 region (12 in TLR7 and 15 in TLR8) in 1,434 SLE cases and 1,591 control subjects of Eastern Asian ancestry using the Beadstation Infinium II...