Dedicated to Prof. Michael Brin on the occasion of his 60th birthday.Abstract. For smooth hyperbolic dynamical systems and smooth weights, we relate Ruelle transfer operators with dynamical Fredholm determinants and dynamical zeta functions: First, we establish bounds for the essential spectral radii of the transfer operator on new spaces of anisotropic distributions, improving our previous results [7]. Then we give a new proof of Kitaev's [17] lower bound for the radius of convergence of the dynamical Fredholm determinant. In addition we show that the zeroes of the determinant in the corresponding disc are in bijection with the eigenvalues of the transfer operator on our spaces of anisotropic distributions, closing a question which remained open for a decade.