The vertical jump is a basic volleyball practice that demands a high ability to generate strength and work in the muscles involved, mainly in the quadriceps muscle. Due to such demand, muscle imbalances between extensor and flexor muscles may be present, causing an overloading on the muscle-tendinous structures of the knee joint. Thus, the establishment of normal parameters for the muscle function related to that joint in volleyball athletes is necessary. Therefore, the purpose of this study was to assess through isokinetic dynamometry the peak torque, work peak, agonist/antagonist ratio, and fatigue index of the flexor and extensor of the knee among both volleyball athlete population. The isokinetic flexion and extension tests of the knees were performed in the concentric-concentric seat mode at 60 and 300 o /sec. velocity in thirtysix athletes (20 under 19-under 21, and 16 under 21). The data allowed to set the parameters for the muscle function of the knee joint among athletes of the 2003 Under 19-Under 21 and Under 21 Brazilian National Team Selection of Male Volleyball. Athletes presented peak torque and work peak values normalized by the body mass to the upper quadriceps to the mean normal values for the athletes and non-athletes populations. Compared to other categories, the under 21 athletes presented significantly higher values for the agonist/antagonist ratio, and peak work ratio of the knee flexors at 60 o /sec. velocity. Furthermore, the agonist/antagonist ratio was lower than the reference value expected for both categories, thus characterizing predominance in the extensor musculature over the flexor musculature. The fatigue index was close to what would be expected for the majority of athletes. The present study may be useful as comparison basis for future studies aiming evaluate the isokinetic muscle function in volleyball players.