The classification of imbalanced datasets, especially in medicine, is a major problem in data mining. Such a problem is evident in analyzing normal and abnormal subjects about knee from data collected during walking. In this work, surface electromyography (sEMG) data were collected during walking from the lower limb of 22 individuals (11 with and 11 without knee abnormality). Subjects with a knee abnormality take longer to complete the walking task than healthy subjects. Therefore, the SEMG signal length of unhealthy subjects is longer than that of healthy subjects, resulting in a problem of imbalance in the collected sEMG signal data. Thus, the development of a classification model for such datasets is challenging due to the bias towards the majority class in the data. The collected sEMG signals are challenging due to the contribution of multiple motor units at a time and their dependency on neuromuscular activity, physiological and anatomical properties of the involved muscles. Hence, automated analysis of such sEMG signals is an arduous task. A multi-step classification scheme is proposed in this research to overcome this limitation. The Wavelet Denoising (WD) scheme is used to denoise the collected sEMG signals, followed by the extraction of eleven time-domain features. The oversampling techniques are then used to balance the data under analysis