This study facilitates an effective design and development of various high stretch compression products by analyzing fabric size, stretch properties, and clothing pressure for various knit structures. Four types of fabrics were knitted with polyester SCY (Single Covered Yarn). Then fabric size including weight and thickness, stretch properties (stretch, elastic recovery), and clothing pressure were then measured, to analyze their interrelation. A comparison of fabric size indicated that yarn floating caused reduction in both course and wale-wise specimens; in addition, yarn overlapping caused a release in course-wise and shrinkage in wale–wise due to tuck. The high density caused by shrinkage in the course-wise due to yarn floating rather than overlapping influenced the weight and thickness of knitted fabrics. Yarn floating reduced course-wise elasticity and increased wale-wise elasticity in the fabric stretch test; however, yarn overlapping reduced elasticity in both directions. The elastic recovery analysis indicated that the recovery value gap among four specimens decreased over time. In comparison clothing pressure, ‘plain-float’ fabric showed higher clothing pressure than ‘plain’, while the pressure value of ‘plain-tuck’ was similar to ‘plain’. Dimensional change in course-wise had a greater effect on clothing pressure than in wale-wise in the correlation among fabric size, stretch properties and clothing pressure. Weight and thickness change exerted a strong influence on clothing pressure which vertically presses down the body. The clothing pressure value of knitted specimen having a lower stretch ratio was higher in course-wise.