Although superpixel segmentation provides a powerful tool for hyperspectral image (HSI) classification, it is still a challenging problem to classify an HSI at superpixel level because of the characteristics of adaptive size and shape of superpixels. Furthermore, these characteristics of superpixels along with the appearance of noisy pixels makes it difficult to appropriately measure the similarity between two superpixels. Under the assumption that pixels within a superpixel belong to the same class with a high probability, this paper proposes a novel spectral–spatial HSI classification method at superpixel level (SSC-SL). Firstly, a simple linear iterative clustering (SLIC) algorithm is improved by introducing a new similarity and a ranking technique. The improved SLIC, specifically designed for HSI, can straightly segment HSI with arbitrary dimensionality into superpixels, without consulting principal component analysis beforehand. In addition, a superpixel-to-superpixel similarity is newly introduced. The defined similarity is independent of the shape of superpixel, and the influence of noisy pixels on the similarity is weakened. Finally, the classification task is accomplished by labeling each unlabeled superpixel according to the nearest labeled superpixel. In the proposed superpixel-level classification scheme, each superpixel is regarded as a sample. This obviously greatly reduces the data volume to be classified. The experimental results on three real hyperspectral datasets demonstrate the superiority of the proposed spectral–spatial classification method over several comparative state-of-the-art classification approaches, in terms of classification accuracy.