The stationary distribution of a fully chaotic system typically exhibits a fractal structure, which dramatically changes if the dynamical equations are even slightly modified. Perturbative techniques are not expected to work in this situation. In contrast, the presence of additive noise smooths out the stationary distribution, and perturbation theory becomes applicable. We show that a perturbation expansion for the Fokker-Planck evolution operator yields surprisingly accurate estimates of long-time averages in an otherwise unlikely scenario.