Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The optimization of the efficiency of wind turbine systems is a fundamental task, from the perspective of a growing share of electricity produced from wind. Despite this, and given the complex multivariate dependence of the power of wind turbines on environmental conditions and working parameters, the literature is lacking studies specifically devoted to a careful characterization of wind farm performance. In particular, in the literature, it is overlooked that there are several types of faults which have similar manifestations and that can be defined as static errors. This kind of error manifests as a static bias occurring from a certain time onward, which can affect the anemometer, the absolute or relative pitch of the blades, or the yaw system. Static or systematic errors typically do not cause the functional failure of the wind turbine system, but they deserve attention due to the fact that they cause power production loss throughout the operation time. Based on this, the first objective of the present study is a critical review of the recent papers devoted to three types of wind turbine static errors: anemometer bias, static yaw error, and pitch misalignment. As a result, a comprehensive viewpoint, enhancing the state of the art in the literature, is developed in this study. Given that the use of data collected by Supervisory Control And Data Acquisition (SCADA) systems has, up to now, been prevailing for the diagnosis of systematic errors compared to the use of further specific sensors, particular attention in the present study is thus devoted to the discussion of the phenomena which can be observable through SCADA data analysis. Based on this, finally, a rigorous work flow is formulated for detecting static errors and discriminating among them through SCADA data analysis. Nevertheless, methods based on additional information sources (like further sensors or meteorological data) are also discussed. An important aspect of this study is that, for each considered type of systematic error, some previously unpublished results based on real-world SCADA data are reported in order to corroborate the proposed framework. Summarizing, then, the present is the first paper which considers and discusses several types of wind turbine static errors in a unified viewpoint, correctly interprets apparently controversial results collected in the literature, and finally provides guidelines for the diagnosis of this kind of error and for the quantification of the performance drop associated with their presence.
The optimization of the efficiency of wind turbine systems is a fundamental task, from the perspective of a growing share of electricity produced from wind. Despite this, and given the complex multivariate dependence of the power of wind turbines on environmental conditions and working parameters, the literature is lacking studies specifically devoted to a careful characterization of wind farm performance. In particular, in the literature, it is overlooked that there are several types of faults which have similar manifestations and that can be defined as static errors. This kind of error manifests as a static bias occurring from a certain time onward, which can affect the anemometer, the absolute or relative pitch of the blades, or the yaw system. Static or systematic errors typically do not cause the functional failure of the wind turbine system, but they deserve attention due to the fact that they cause power production loss throughout the operation time. Based on this, the first objective of the present study is a critical review of the recent papers devoted to three types of wind turbine static errors: anemometer bias, static yaw error, and pitch misalignment. As a result, a comprehensive viewpoint, enhancing the state of the art in the literature, is developed in this study. Given that the use of data collected by Supervisory Control And Data Acquisition (SCADA) systems has, up to now, been prevailing for the diagnosis of systematic errors compared to the use of further specific sensors, particular attention in the present study is thus devoted to the discussion of the phenomena which can be observable through SCADA data analysis. Based on this, finally, a rigorous work flow is formulated for detecting static errors and discriminating among them through SCADA data analysis. Nevertheless, methods based on additional information sources (like further sensors or meteorological data) are also discussed. An important aspect of this study is that, for each considered type of systematic error, some previously unpublished results based on real-world SCADA data are reported in order to corroborate the proposed framework. Summarizing, then, the present is the first paper which considers and discusses several types of wind turbine static errors in a unified viewpoint, correctly interprets apparently controversial results collected in the literature, and finally provides guidelines for the diagnosis of this kind of error and for the quantification of the performance drop associated with their presence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.