2021
DOI: 10.1109/access.2020.3048088
|View full text |Cite
|
Sign up to set email alerts
|

Knowledge-Guided Sentiment Analysis Via Learning From Natural Language Explanations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
8
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
4
1

Relationship

0
10

Authors

Journals

citations
Cited by 32 publications
(9 citation statements)
references
References 34 publications
0
8
0
1
Order By: Relevance
“…Analisis sentimen merupakan salah satu teknik Natural Language Processing (NLP) yang menganalisis pendapat, sikap, dan emosi terhadap suatu entitas yang berupa teks. Analisis sentimen diperlukan sebagai bahan evaluasi yang selanjutnya menjadi dasar dalam pengambilan keputusan [3]. Kesulitan dalam analisis sentimen biasanya terjadi karena terlalu banyaknya data.…”
Section: Pendahuluanunclassified
“…Analisis sentimen merupakan salah satu teknik Natural Language Processing (NLP) yang menganalisis pendapat, sikap, dan emosi terhadap suatu entitas yang berupa teks. Analisis sentimen diperlukan sebagai bahan evaluasi yang selanjutnya menjadi dasar dalam pengambilan keputusan [3]. Kesulitan dalam analisis sentimen biasanya terjadi karena terlalu banyaknya data.…”
Section: Pendahuluanunclassified
“…SentiView [1], a vocabulary-based approach for sentiment inquiry, has been presented as a second framework for sentiment investigation. Because of preprocessing and the exclusion of non-opinion tweets from the data, they were able to achieve excellent accuracy.…”
Section: Literature Surveymentioning
confidence: 99%
“…The second type uses traditional machine learning algorithms to extract features from sentences and evaluate the classification performance of models based on these features. This method has a faster running speed, can make full use of corpus information, but is limited by the human effort required to obtain feature information and its narrow application scope [3] . The third type extracts a large number of feature information from experimental samples using deep learning techniques, learns the deep intrinsic information of sample data, saves the trouble of manually selecting features, and has better adaptability.…”
Section: Introductionmentioning
confidence: 99%