Mouthguards are used to reduce injuries and the probability of them to orofacial tissues when impacted during sports. However, the usage of a mouthguard is low due to the discomfort caused by the thickness of the mouthguard. Herein, we have constructed a dynamic dual network to fabricate a shear-stiffening mouthguard with remoldability, which are called remoldable shear-stiffening mouthguards (RSSMs). Based on diboron/oxygen dative bonds, RSSMs show a shearstiffening effect and excellent shock absorption ability, which can absorb more than 90% of the energy of a blank. Even reducing the thickness to half, RSSMs can reduce approximately 25% of the transmitted force and elongate by about 1.6-fold the buffer time compared to commercial mouthguard materials (Erkoflex and Erkoloc-pro). What is more, owing to the dynamic dual network, RSSMs show good remolding performance with unchanged shear-stiffening behavior and impact resistance, which conforms to the existing vacuum thermoforming mode. In addition, RSSMs exhibit stability in artificial saliva and biocompatibility. In conclusion, this work will broaden the range of mouthguard materials and offer a platform to apply shear-stiffening materials to biomedical applications and soft safeguarding devices.