This paper develops a Reasoning about Actions and Change framework integrated with Default Reasoning, suitable as a Knowledge Representation and Reasoning framework for Story Comprehension. The proposed framework, which is guided strongly by existing knowhow from the Psychology of Reading and Comprehension, is based on the theory of argumentation from AI. It uses argumentation to capture appropriate solutions to the frame, ramification and qualification problems and generalizations of these problems required for text comprehension. In this first part of the study the work concentrates on the central problem of integration (or elaboration) of the explicit information from the narrative in the text with the implicit (in the reader's mind) common sense world knowledge pertaining to the topic(s) of the story given in the text. We also report on our empirical efforts to gather background common sense world knowledge used by humans when reading a story and to evaluate, through a prototype system, the ability of our approach to capture both the majority and the variability of understanding of a story by the human readers in the experiments.