2018
DOI: 10.33480/pilar.v14i2.1023
|View full text |Cite
|
Sign up to set email alerts
|

Komparasi Algoritma Klasifikasi Pada Analisis Review Hotel

Abstract: At this time the freedom to express opinions in oral and written forms about everything is very easy. This activity can be used to make decisions by some business people. Especially by service providers, such as hotels. This will be very useful in the development of the hotel business itself. But the review data must be processed using the right algorithm. So this study was conducted to find out which algorithms are more feasible to use to get the highest accuracy. The methods used are Naïve Bayes (NB), Suppor… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
2
0
2

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(4 citation statements)
references
References 2 publications
0
2
0
2
Order By: Relevance
“…In this study, the evaluation was carried out by calculating the accuracy. To get the value of the accuracy results, this study uses a confusion matrix as an evaluation test [15].…”
Section: Discussionmentioning
confidence: 99%
“…In this study, the evaluation was carried out by calculating the accuracy. To get the value of the accuracy results, this study uses a confusion matrix as an evaluation test [15].…”
Section: Discussionmentioning
confidence: 99%
“…Term Frequency-Inverse Document Frequency (TF-IDF) merupakan teknik statistik numerik yang dapat menentukan bobot untuk setiap term atau kata dalam setiap dokumen [9]. Penelitian kedua [10] melakukan analisis review hotel dengan membandingkan metode klasifikasi Naïve Bayes, Support Vector Machine, dan KNN (K-Nearest Neighbor). Didapat dari hasil pengujian bahwa metode KNN (K-Nearest Neighbor) menghasilkan nilai akurasi yang paling tinggi dibandingkan dengan Naïve Bayes dan Support Vector Machine.…”
Section: Pendahuluanunclassified
“…Lila Dini Utami, Hilda Rachmi, dan Dini Nurlaela melakukan Komparasi Algoritma Klasifikasi Pada Analisis Review Hotel dengan membandingkan Naïve Bayes, Support Vector Machine dan K-Nearest Neighbor. Hasil pengujian didapatkan bahwa algoritma K-Nearest Neighbor menghasilkan nilai akurasi yang paling tinggi dibandingkan dengan Naïve Bayes dan Support Vector Machine [11].…”
Section: Penelitian Sebelumnya Penelitian Dilakukan Oleh Abdul Maunclassified