“…In this paper we demonstrate that a realistic device, consisting of two QDs with different energies and with different inter-dot and intra-dot Coulomb interactions, coupled in parallel to two leads, displays a QPT by simply gate tuning the on-site energy difference between the two QDs at the chemical potential corresponding to the particle-hole (PH) symmetric point, where the two-dot system is doubly occupied. (Similar setups have already been studied, but with no energy difference between the dots 16 or in the absence of inter-impurity repulsion 17 , both of which play an important role in our formulation.) After demonstrating the transition numerically, employing the numerical-renormalization-group (NRG) method, and semi-analytically, using slave-boson mean field theory (SBMFT), we show, by transforming the system Hamiltonian to an even-odd basis, that the difference between the dot energies, relative to the difference between the inter-and intra-dot repulsions, plays the role of a magnetic interaction, which changes its sign, from FM to AFM, at the point where the QPT takes place.…”