Interpolation is a procedure that depends on the spatial and/or statistical properties of the analysed variable(s). It is a particularly challenging task for small datasets, such as in those with less than 20 points of data. This problem is common in subsurface geological mapping, i.e., in cases where the data is taken solely from wells. Successful solutions of such mapping problems depend on interpolation methods designed primarily for small datasets and the datasets themselves. Here, we compare two methods, Inverse Distance Weighting and the Modified Shepard’s Method, and apply them to three variables (porosity, permeability, and thickness) measured in the Neogene sandstone hydrocarbon reservoirs (northern Croatia). The results show that cross-validation itself will not provide appropriate map selection, but, in combination with geometrical features, it can help experts eliminate the solutions with low-probable structures/shapes. The Golden Software licensed program Surfer 15 was used for the interpolations in this study.