2018
DOI: 10.3790/vjh.87.3.107
|View full text |Cite
|
Sign up to set email alerts
|

Kryptowährungen in der Asset-Allokation: Eine empirische Untersuchung auf Basis eines beispielhaften deutschen Multi-Asset-Portfolios

Abstract: Zusammenfassung: Dieser Artikel zeigt, dass eine Beimischung von Kryptowährungen in ein Portfolio, bestehend aus mehreren deutschen Asset-Klassen, mit Vorsicht zu betrachten ist. Auf Grund einer hohen realisierten Volatilität werden Kryptowährungen unter einem Markowitz- und Risikoparitätsansatz nur geringfügig in ein Referenzportfolio aufgenommen. Gleichzeitig wird die Aufnahme der Kryptowährungen durch Mean-Variance-Spanning-Tests nicht unterstützt. Ferner stellt die Handelbarkeit dieser neuen Asset-Klasse s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

1
16
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
4
1
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(18 citation statements)
references
References 22 publications
1
16
1
Order By: Relevance
“…However, the authors state that dying cryptocurrencies suffer significant drops of their market price which is accompanied by the illiquidity of the respective coins. Not least because of those effects, the inclusion of dying cryptocurrencies in their dataset would have worsened the results of Glas/Poddig (2018), as the authors admit in their study.…”
Section: Introductionmentioning
confidence: 89%
See 4 more Smart Citations
“…However, the authors state that dying cryptocurrencies suffer significant drops of their market price which is accompanied by the illiquidity of the respective coins. Not least because of those effects, the inclusion of dying cryptocurrencies in their dataset would have worsened the results of Glas/Poddig (2018), as the authors admit in their study.…”
Section: Introductionmentioning
confidence: 89%
“…First, there are some existing studies, just like Wu/Pandey (2014) or Eisl et al (2015), which do not implement such a traditional Mean-Variance-Framework, but a Mean-Conditional-Value-at-Risk-Framework, as it is proposed by Rockafellar and Uryasev (2000) because of the non-normality of cryptocurrency returns (Osterrieder et al (2017)). On the other hand, there is also a huge number of studies, such as Borri (2019), Glas/Poddig (2018), Brauneis/Mestel (2019) and Liu (2019), which nevertheless stick to the (widely spread) Markowitz framework for simplicity reasons, e.g. because the scope of their analysis is on additional restrictions (just as the impact of transaction costs or illiquidity issues).…”
Section: Introductionmentioning
confidence: 99%
See 3 more Smart Citations