KRAS is the most frequently mutated oncogene identified in human cancers. Despite the numerous efforts to develop effective specific inhibitors against KRAS, this molecule has remained “undruggable” for decades. The development of direct KRAS inhibitors, such as sotorasib, the first FDA-approved drug targeting KRAS G12C, or adagrasib, was made possible with the discovery of a small pocket in the binding switch II region of KRAS G12C. However, a new challenge is represented by the necessity to overcome resistance mechanisms to KRAS inhibitors. Another area to be explored is the potential role of co-mutations in the selection of the treatment strategy, particularly in the setting of immune checkpoint inhibitors. The aim of this review was to analyze the state-of-the-art of KRAS mutations in non-small-cell lung cancer by describing the biological structure of KRAS and exploring the clinical relevance of KRAS as a prognostic and predictive biomarker. We reviewed the different treatment approaches, focusing on the novel therapeutic strategies for the treatment of KRAS-mutant lung cancers.