BetonKalender 2022 2022
DOI: 10.1002/9783433610879.ch9
|View full text |Cite
|
Sign up to set email alerts
|

Künstliche Intelligenz – multiskale und cross‐domäne Synergien von Raumfahrt und Bauwesen

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
4
0
20

Year Published

2022
2022
2024
2024

Publication Types

Select...
3
3

Relationship

3
3

Authors

Journals

citations
Cited by 11 publications
(24 citation statements)
references
References 101 publications
0
4
0
20
Order By: Relevance
“…This paves the way for the use of piKI models in civil engineering as digital twins of a structure over its life cycles. Quelle: [7] AUFSATZ ARTICLE [5], den Stahlbau in [6] sowie für den Massivund Brückenbau in [7] zu finden. [6,9] gezeigt.…”
Section: Explainable Domain-specific Artificial Intelligence For Brid...unclassified
See 2 more Smart Citations
“…This paves the way for the use of piKI models in civil engineering as digital twins of a structure over its life cycles. Quelle: [7] AUFSATZ ARTICLE [5], den Stahlbau in [6] sowie für den Massivund Brückenbau in [7] zu finden. [6,9] gezeigt.…”
Section: Explainable Domain-specific Artificial Intelligence For Brid...unclassified
“… Überblick zu a) Künstlicher Intelligenz, Maschinellem Lernen und Tiefem Lernen, b) herkömmlicher und physikinformierter KI Overview of a) Artificial Intelligence, Machine Learning and Deep Learning, b) black box and physics‐informed AI Quelle: [7] …”
Section: Grundlagen Zur Künstlichen Intelligenz (Ki)unclassified
See 1 more Smart Citation
“…To that end, a two-phased research program [1,2] is proposed to address this unsatisfactory situation.…”
Section: Introductionmentioning
confidence: 99%
“…In the first phase, non-linear FEM for reinforced concrete plates and slabs developed at ETH Zurich [3][4][5][6][7][8] are combined with scientific machine learning (SciML) algorithms to create hybrid AI-FEM models, which are expected to be much more efficient compared to established analysis methods both in terms of the computing power required and the reliability of predicting the load-bearing behaviour. In the second phase of this project, the AI-FEM-Hybrids will be used within a novel Generative Design process for accelerated yet realistic conceptual design of bridges [1,2].…”
Section: Introductionmentioning
confidence: 99%