2021
DOI: 10.48550/arxiv.2108.04365
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Kurdyka-Łojasiewicz functions and mapping cylinder neighborhoods

Abstract: Kurdyka-Łojasiewicz (KŁ) functions are real-valued functions characterized by a differential inequality involving the norm of their gradient. This class of functions is quite rich, containing objects as diverse as subanalytic, transnormal or Morse functions. We prove that the zero locus of a Kurdyka-Łojasiewicz function admits a mapping cylinder neighborhood. This implies, in particular, that wildly embedded topological 2-manifolds in 3-dimensional Euclidean space, such as Alexander horned spheres, do not ari… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 10 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?