$ L^1 $ local stability to a nonlinear shallow water wave model
Jun Meng,
Shaoyong Lai
Abstract:<p>A nonlinear shallow water wave equation containing the famous Degasperis$ - $Procesi and Fornberg$ - $Whitham models is investigated. The novel derivation is that we establish the $ L^2 $ bounds of solutions from the equation if its initial value belongs to space $ L^2(\mathbb{R}) $. The $ L^{\infty} $ bound of the solution is derived. The techniques of doubling the space variable are employed to set up the $ L^1 $ local stability of short time solutions.</p>
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.