2010
DOI: 10.4074/s0336150010012019
|View full text |Cite
|
Sign up to set email alerts
|

L’écriture de l’administration électronique : le cas de Synergies

Abstract: Résumé Odile Coppey et Sarah Labelle analysent ici, sur la base d’une observation participante, un dispositif de publication et d’échanges mis en place dans le cadre du projet de modernisation de l’administration, puis abandonné. Elles étudient la façon dont se rencontrent autour d’un tel projet les enjeux de l’écriture dans l’espace public et les imaginaires politiques et managériaux d’une communication participative. Analysant précisément l’écart entre les idéaux mobilisés par un tel projet et les difficul… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0

Year Published

2010
2010
2010
2010

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(5 citation statements)
references
References 0 publications
0
5
0
Order By: Relevance
“…The function M is not a bijection in general. However this may happen, under the conditions of proposition 3.4: this is the exact parameterization property from [Lambán et al 2003], which is also proved in [Domínguez and Duval 2009]. It follows from [Rutten 2000] and [Hensel and Reichel 1995] that there is a terminal model of Σ A over M 0 .…”
Section: The Parameter Passing Process Is a 2-morphism Of Logicsmentioning
confidence: 75%
See 4 more Smart Citations
“…The function M is not a bijection in general. However this may happen, under the conditions of proposition 3.4: this is the exact parameterization property from [Lambán et al 2003], which is also proved in [Domínguez and Duval 2009]. It follows from [Rutten 2000] and [Hensel and Reichel 1995] that there is a terminal model of Σ A over M 0 .…”
Section: The Parameter Passing Process Is a 2-morphism Of Logicsmentioning
confidence: 75%
“…There are several definitions of limit sketches (also called projective sketches), all of them are such that a limit sketch generates a category with limits [Coppey andLair 1984, Barr andWells 1999]. While a category with limits is a graph with identities, compositions, limit cones and tuples, satisfying a bunch of axioms, we define a limit sketch E as a graph with potential identities, compositions, limit cones and tuples, which become real features in the generated category with limits C (E).…”
Section: Limit Sketchesmentioning
confidence: 99%
See 3 more Smart Citations