The search for high relaxivities and increased specificity continues to be central to the development of paramagnetic contrast agents for magnetic resonance imaging (MRI). Ferritin, due to its unique surface properties, architecture, and biocompatibility, has emerged as a natural nanocage that can potentially help to reach both these goals. This review aims to highlight recent advances in the use of ferritin as a nanoplatform for the delivery of metal-based MRI contrast agents (containing Gd3+, Mn2+, or Fe2O3) alone or in combination with active molecules used for therapeutic purposes. The collected results unequivocally show that the use of ferritin for contrast agent delivery leads to more accurate imaging of cancer cells and a significantly improved targeted therapy.