We propose a three‐step bandwidth enhancing wavelet deconvolution process, combining linear inverse filtering and non‐linear reflectivity construction based on a sparseness assumption. The first step is conventional Wiener deconvolution. The second step consists of further spectral whitening outside the spectral bandwidth of the residual wavelet after Wiener deconvolution, i.e., the wavelet resulting from application of the Wiener deconvolution filter to the original wavelet, which usually is not a perfect spike due to band limitations of the original wavelet. We specifically propose a zero‐phase filtered sparse‐spike deconvolution as the second step to recover the reflectivity dominantly outside of the bandwidth of the residual wavelet after Wiener deconvolution. The filter applied to the sparse‐spike deconvolution result is proportional to the deviation of the amplitude spectrum of the residual wavelet from unity, i.e., it is of higher amplitude; the closer the amplitude spectrum of the residual wavelet is to zero, but of very low amplitude, the closer it is to unity. The third step consists of summation of the data from the two first steps, basically adding gradually the contribution from the sparse‐spike deconvolution result at those frequencies at which the residual wavelet after Wiener deconvolution has small amplitudes. We propose to call this technique “sparsity‐enhanced wavelet deconvolution”. We demonstrate the technique on real data with the deconvolution of the (normal‐incidence) source side sea‐surface ghost of marine towed streamer data. We also present the extension of the proposed technique to time‐varying wavelet deconvolution.