2008
DOI: 10.1051/medsci/2008244390
|View full text |Cite
|
Sign up to set email alerts
|

La dyskératose congénitale

Abstract: Le phénotype de la dyskératose congénitale (DC), ou syndrome de Zinsser-Cole-Engman [1], est très variable d'un patient à l'autre et, pour un patient donné, évolutif au cours du temps. La description précise du phénotype a été grandement facilitée par la mise en place en 1995 par l'équipe d'Inderjet Dokal à Londres d'un registre international de la DC [2]. Ce registre associe des données cliniques détaillées et des prélèvements sanguins pour les membres malades ou asymptomatiques de 270 familles.-La forme typi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
6
0
2

Year Published

2009
2009
2017
2017

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 20 publications
(8 citation statements)
references
References 62 publications
0
6
0
2
Order By: Relevance
“…Dyskeratosis congenita can also be caused by mutations in the ncRNA telomerase component, TERC (Hoareau-Aveilla et al, 2008; Trahan and Dragon, 2009). TERC is bound and stabilized by DKC1, but is destabilized in dyskeratosis congenita (Ashbridge et al, 2009).…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…Dyskeratosis congenita can also be caused by mutations in the ncRNA telomerase component, TERC (Hoareau-Aveilla et al, 2008; Trahan and Dragon, 2009). TERC is bound and stabilized by DKC1, but is destabilized in dyskeratosis congenita (Ashbridge et al, 2009).…”
Section: Resultsmentioning
confidence: 99%
“…Alteration of bacterial rRNA pseudouridylation affects antibiotic sensitivity (Toh and Mankin, 2008), ablation of rRNA pseudouridylation by CBF5 deletion in S. cerevisae is lethal (Jiang et al, 1993; Zebarjadian et al, 1999), and defects in DKC1/Dyskerin, the mammalian CBF5 ortholog, cause dyskeratosis congenita (Heiss et al, 1998), a disorder characterized by failure of ribosome biogenesis and an increased risk of cancer (Hoareau-Aveilla et al, 2008). Furthermore, deletion of S. cerevisiae PUS1 results in growth defects, and mutation of human PUS1 leads to mitochondrial myopathy and sideroblastic anemia (Fujiwara and Harigae, 2013).…”
Section: Introductionmentioning
confidence: 99%
“…Pseudouridine is the most abundant post-transcription modification in the RNA realm (Charette and Gray, 2000a; Ge and Yu, 2013). It is well known that pseudouridylation is catalyzed by pseudouridine synthases, and that this modification plays critical roles in ribosomal RNA and non-coding RNA (ncRNA) with the defect of pseudouridylation leading to noticeable phenotypes (Fujiwara and Harigae, 2013; Heiss et al, 1998; Hoareau-Aveilla et al, 2008; Jiang et al, 1993; Toh and Mankin, 2008; Zebarjadian et al, 1999). However, the prevalence and distribution of this abundant modification in mRNA has only recently been revealed with the transcriptome-wide distribution of pseudouridines uncovered by employing a selective chemical-labelling approach coupled with high-throughput sequencing (Carlile et al, 2014; Li et al, 2015; Schwartz et al, 2014a).…”
Section: Beyond the Dna: N6-methyladenosine Methylation And Other Rnamentioning
confidence: 99%
“…H/ACA snoRNAs are present in eukaryotes, but not in bacteria, and mostly guide modifications on rRNA 9 . In yeast, the pseudouridine synthase CBF5 of the H/ACA snoRNPs is essential for growth 10 and mutations of this enzyme in humans causes diseases including cancer 11 . Although individual Ψs may have a minor effect on the function of the RNA, a combination of Ψs present in certain domains affect ribosome processing and translation fidelity 12 13 .…”
mentioning
confidence: 99%