2002
DOI: 10.32468/espe.41-4203
|View full text |Cite
|
Sign up to set email alerts
|

La inflación en Colombia : una aproximación desde las redes neuronales

Abstract: * Se agradecen de manera especial los comentarios y sugerencias de Miguel Urrutia M. Como también, la colaboración de Norberto Rodríguez N. y Rocío Betancourt G. en la descripción y evaluación de los modelos lineales. Los resultados y opiniones son responsabilidad exclusiva de los autores y no comprometen al Banco de la República ni a su Junta Directiva.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
4
0
19

Year Published

2003
2003
2016
2016

Publication Types

Select...
6
3

Relationship

1
8

Authors

Journals

citations
Cited by 18 publications
(23 citation statements)
references
References 5 publications
0
4
0
19
Order By: Relevance
“…A Performance of Colombian inflation for 2-month to 9-month ahead forecasts Rodríguez and Siado (2003) Neural Networks N eural.N etwork Neural Networks model Misas et al (2002) Neural Networks N eural.N etwork.C Weighted average between an NN for food − by components inflation and an NN for non-food inflation LSTR LST R Logistic smooth transition regression model Jalil and Melo (1999) FLS F LS Flexible Least Squares approach Melo and Misas (2004)…”
Section: Resultsmentioning
confidence: 99%
“…A Performance of Colombian inflation for 2-month to 9-month ahead forecasts Rodríguez and Siado (2003) Neural Networks N eural.N etwork Neural Networks model Misas et al (2002) Neural Networks N eural.N etwork.C Weighted average between an NN for food − by components inflation and an NN for non-food inflation LSTR LST R Logistic smooth transition regression model Jalil and Melo (1999) FLS F LS Flexible Least Squares approach Melo and Misas (2004)…”
Section: Resultsmentioning
confidence: 99%
“…Wang (2007) 8 ,and Misas, López & Querubín (2002) 9 obtained favorable results for ANN that establish their superiority over linear models.However,Faraway & Chatfield (1998) criticized the adjustment of ANN to some of the univariate series used in the article "Time series Forecasting analysis and control" of Box, Jenkins & Reinsel, supporting the use of ARIMA models. SimilarlyCallen, Kwan, Yip, & Yuan (1996) reported that the linear models outperformed the ANN, when forecasting financial returns of the shares of the New York Stock Exchange.…”
mentioning
confidence: 81%
“…Likewise, a large number of hidden units increase the probability that the parameters converge to a local optimum. Therefore this document follows Misas, López & Querubín (2002) approach, where the number of nodes is selected by iterating between different values, not exceeding the double of the maximum number of outgoing nodes.…”
Section: Construction Of the Neural Networkmentioning
confidence: 99%
“…variables exógenas y G la función logística, es decir: Dado que esta red presenta una única superficie oculta y que la información va en una única dirección entrada salida (input-output) se conoce como red neuronal "feedforward" multicapa de una única superficie oculta o "single hidden layer feedforward network", (Misas et al, 2002).…”
Section: Arquitecturaunclassified