LaANIL: ANIL with Look-Ahead Meta-Optimization and Data Parallelism
Vasu Tammisetti,
Kay Bierzynski,
Georg Stettinger
et al.
Abstract:Meta-few-shot learning algorithms, such as Model-Agnostic Meta-Learning (MAML) and Almost No Inner Loop (ANIL), enable machines to learn complex tasks quickly with limited data and based on previous experience. By maintaining the inner loop head of the neural network, ANIL leads to simpler computations and reduces the complexity of MAML. Despite its benefits, ANIL suffers from issues like accuracy variance, slow initial learning, and overfitting, hardening its adaptation and generalization. This work proposes … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.