In this study, non-linear static analysis of a cantilever Timoshenko beam composed of functionally graded material (FGM) under a non-follower transversal uniformly distributed load is studied with large displacements and large rotations. Material properties of the beam change in the thickness direction according to a power-law function. In this study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The non-linear problem is solved by using the incremental displacement-based finite element method in conjunction with the Newton-Raphson iteration method. To use the solution procedures of the Newton-Raphson method, there is a need to linearize equilibrium equations, which can be achieved through the linearization of the principle of virtual work. In this study, the effects of large deflections, large rotations and various material distributions on displacements and normal stress and shear stress distributions through the thickness of the beam are investigated in detail. The convergence study is performed for various numbers of finite elements. In addition, some of the particular results of the present study which are obtained for the homogeneous material case are compared with the results of the SAP2000 packet program. Numerical results show that geometrical non-linearity and material distribution play very important roles in the static responses of FGM beams.