Coronagraphs allow for faint off-axis exoplanets to be observed, but are limited to angular separations greater than a few beam widths. Accessing closer-in separations would greatly increase the expected number of detectable planets, which scales inversely with the inner working angle. The Photonic Lantern Nuller (PLN) is an instrument concept designed to characterize exoplanets within a single beam-width of its host star, using a device called the mode-selective photonic lantern (MSPL), a photonic mode-converter that maps linearly polarized modes into individual single-mode outputs. The PLN leverages the spatial symmetry of an MSPL to create nulled ports, which cancel out on-axis starlight but allow off-axis exoplanet light to couple. The null-depths are limited by wavefront aberrations in the system as well as by imperfections in the lantern's response. However, wavefront sensing and control can be used to improve the null-depths achievable. We extend the technique of Implicit Electric Field Conjugation, commonly used to create dark zones with coronagraphic instruments, to work with a PLN. We present results from simulations and from in-lab testbed experiments.