Quantum electrodynamic (QED) plasmas, describing the intricate interplay of strong-field QED and collective pair plasma effects, play pivotal roles in astrophysical settings like those near black holes or magnetars. However, the creation of observable QED plasmas in laboratory conditions was thought to require ultra-intense lasers beyond the capabilities of existing technologies, hindering experimental verification of QED plasma theories. This paper provides a comprehensive review of recent studies outlining a viable approach to create and detect observable QED plasmas by combining existing electron beam facilities with state-of-the-art lasers. The collision between a high-density 30 GeV electron beam and a 3 PW laser initiates a QED cascade, resulting in a pair plasma with increasing density and decreasing energy. These conditions contribute to a higher plasma frequency, enabling the observation of ∼0.2% laser frequency upshift. This solution of the joint production-observation problem should facilitate the near-term construction of ultra-intense laser facilities both to access and to observe the realm of strong-field QED plasmas.