The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.